Combined Cycle

A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turbine (CCGT) plant. The same principle is also used for marine propulsion, where it is called a combined gas and steam (COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs.

The principle is that after completing its cycle in the first engine, the working fluid (the exhaust) is still hot enough that a second subsequent heat engine can extract energy from the heat in the exhaust. Usually the heat passes through a heat exchanger so that the two engines can use different working fluids.

By generating power from multiple streams of work, the overall efficiency can be increased by 50–60%. That is, from an overall efficiency of the system of say 34% for a simple cycle, to as much as 64% net for the turbine alone in specified conditions for a combined cycle.[1] This is more than 84% of the theoretical efficiency of a Carnot cycle. Heat engines can only use part of the energy from their fuel, so in a non-combined cycle heat engine, the remaining heat (i.e., hot exhaust gas) from combustion is wasted.

Basic combined cycle

The thermodynamic cycle of the basic combined cycle consists of two power plant cycles. One is the Joule or Brayton cycle which is a gas turbine cycle and the other is the Rankine cycle which is a steam turbine cycle.[5] The cycle 1-2-3-4-1 which is the gas turbine power plant cycle is the topping cycle. It depicts the heat and work transfer process taking place in the high temperature region.

The cycle a-b-c-d-e-f-a which is the Rankine steam cycle takes place at a lower temperature and is known as the bottoming cycle. Transfer of heat energy from high temperature exhaust gas to water and steam takes place in a waste heat recovery boiler in the bottoming cycle. During the constant pressure process 4-1 the exhaust gases from the gas turbine reject heat. The feed water, wet and super heated steam absorb some of this heat in the process a-b, b-c and c-d.

 

Typical size

Plant size is important in the cost of the plant. The larger plant sizes benefit from economies of scale (lower initial cost per kilowatt) and improved efficiency.

For large-scale power generation, a typical set would be a 270 MW primary gas turbine coupled to a 130 MW secondary steam turbine, giving a total output of 400 MW. A typical power station might consist of between 1 and 6 such sets.

Gas turbines for large-scale power generation are manufactured by at least four separate groups – General Electric, Siemens, Mitsubishi-Hitachi, etc. These groups are also developing, testing and/or marketing gas turbine sizes in excess of 300 MW (for 60 Hz applications) and 400 MW (for 50 Hz applications). Combined cycle units are made up of one or more such gas turbines, each with a waste heat steam generator arranged to supply steam to a single or multiple steam turbines, thus forming a combined cycle block or unit. Combined cycle block sizes offered by three major manufacturers (Alstom, General Electric and Siemens) can range anywhere from 50 MW to well over 1300 MW with costs approaching $670/kW.

 

Fuel for combined cycle power plants

Combined cycle plants are usually powered by natural gas, although fuel oil, synthesis gas or other fuels can be used. The supplementary fuel may be natural gas, fuel oil, or coal. Biofuels can also be used. Integrated solar combined cycle power stations combine the energy harvested from solar radiation with another fuel to cut fuel costs and environmental impact (See: ISCC section). Many next generation nuclear power plants can use the higher temperature range of a Brayton top cycle, as well as the increase in thermal efficiency offered by a Rankine bottoming cycle.

Where the extension of a gas pipeline is impractical or cannot be economically justified, electricity needs in remote areas can be met with small-scale combined cycle plants using renewable fuels. Instead of natural gas, these gasify and burn agricultural and forestry waste, which is often readily available in rural areas.

For more information Contact us.

We Helped many Businesses in getting more efficient & competitive.
Get Basic Contact Information quickly by Scanning QR Code from camera application in your smart phones -> 
Bhupex_QR_Code